Cheng and Yau’s Work on the Monge-ampère Equation and Affine Geometry
نویسندگان
چکیده
S. T. Yau has done extremely deep and powerful work in differential geometry and partial differential equations. His resolution of the Calabi conjecture on the existence of KählerEinstein metrics, by solving a complex Monge-Ampère equation on Kähler manifolds, is of fundamental importance in both mathematics and physics. We would like to recall in this article the contributions of S. Y. Cheng and S. T. Yau to the real Monge-Ampère equation and its applications to affine geometry. Many definitions and details are omitted here. We refer the reader to the surveys by Loftin [34] and Trudinger and Wang [51], as well as other references cited below, for more extensive discussions of the topics covered here.
منابع مشابه
The Monge-Ampère equation and its geometric applications
In this paper we present the basic theory of the Monge-Ampère equation together with a selection of geometric applications, mainly to affine geometry. First we introduce the Monge-Ampère measure and the resultant notion of generalized solution of Aleksandrov. Then we discuss a priori estimates and regularity, followed by the existence and uniqueness of solutions to various boundary value proble...
متن کاملComplex Monge–Ampère equations and totally real submanifolds
We study the Dirichlet problem for complex Monge–Ampère equations in Hermitian manifolds with general (non-pseudoconvex) boundary. Our main result (Theorem 1.1) extends the classical theorem of Caffarelli, Kohn, Nirenberg and Spruck in Cn. We also consider the equation on compact manifolds without boundary, attempting to generalize Yau’s theorems in the Kähler case. As applications of the main ...
متن کاملBoundary regularity for the Monge-Ampère and affine maximal surface equations
In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the existence and uniqueness of globally smooth solutions to the second boundary value problem for the affine maximal surface equation and affine me...
متن کاملAffine Manifolds, Syz Geometry and the “y” Vertex
We study the real Monge-Ampère equation in two and three dimensions, both from the point of view of the SYZ conjecture, where solutions give rise to semi-flat Calabi-Yau’s and in affine differential geometry, where solutions yield parabolic affine sphere hypersurfaces. We find explicit examples, connect the holomorphic function representation to Hitchin’s description of special Lagrangian modul...
متن کاملCheng and Yau’s Work on Affine Geometry and Maximal Hypersurfaces
As part of their great burst of activity in the late 1970s, Cheng and Yau proved many geometric results concerning differential structures invariant under affine transformations of R n. Affine differential geometry is the study of those differential properties of hypersurfaces in R n+1 which are invariant under volume-preserving affine transformations. One way to develop this theory is to start...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010